Cytohesin-1 is a dynamic regulator of distinct LFA-1 functions in leukocyte arrest and transmigration triggered by chemokines
نویسندگان
چکیده
Cytohesin-1 is a regulatory interaction partner of the beta2 integrin alphaLbeta2 (LFA-1) and a guanine exchange factor (GEF) for ADP ribosylation factor (ARF)-GTPases. However, a functional role of cytohesin-1 in leukocyte adhesion to activated endothelium and subsequent transmigration in response to chemokines has not been defined. Overexpression of cytohesin-1 increased LFA-1-dependent arrest of leukocytic cells triggered by chemokines on cytokine-activated endothelium in flow while reducing the fraction of rolling cells. Conversely, a dominant-negative PH domain construct of cytohesin-1 but not a mutant deficient in GEF activity impaired arrest, indicating an involvement of the PH domain while GEF function is not required. Expression of these constructs and a beta2 mutant interrupting the interaction with cytohesin-1 indicated that shape change in flow and transendothelial chemotaxis involve both LFA-1 avidity regulation and GEF activity of cytohesin-1. As a potential downstream target, ARF6 but not ARF1 was identified to participate in chemotaxis. Our data suggest that cytohesin-1 and ARF6 are involved in the dynamic regulation of complex signaling pathways and cytoskeletal remodeling processes governing LFA-1 functions in leukocyte recruitment. Differential effects of cytohesin-1 and ARF6 mutants in our systems reveal that cytohesin-1 with its GEF activity controls both conversion of rolling into firm arrest and transmigration triggered by chemokines, whereas a cyclical activity of ARF6 plays a more important role in diapedesis.
منابع مشابه
Dynamic shifts in LFA-1 affinity regulate neutrophil rolling, arrest, and transmigration on inflamed endothelium.
Polymorphonuclear leukocyte (PMN) recruitment to vascular endothelium during acute inflammation involves cooperation between selectins, G-proteins, and beta2-integrins. LFA-1 (CD11a/CD18) affinity correlates with specific adhesion functions because a shift from low to intermediate affinity supports rolling on ICAM-1, whereas high affinity is associated with shear-resistant leukocyte arrest. We ...
متن کاملCoordinated Redistribution of Leukocyte LFA-1 and Endothelial Cell ICAM-1 Accompany Neutrophil Transmigration
The leukocyte integrin lymphocyte function-associated antigen 1 (LFA-1) and its endothelial ligand intercellular adhesion molecule (ICAM)-1 play an important role in transmigration as demonstrated by in vivo and in vitro models of inflammation. Despite the prominent role, little is known concerning the distribution and dynamic behavior of these adhesion molecules during leukocyte transmigration...
متن کاملOligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium.
Chemokines control inflammatory leukocyte recruitment. The propensity of chemokines such as CC chemokine ligand 5 (CCL5)/RANTES (regulated on activation, normal T cell expressed and secreted) to bind to glycosaminoglycans and to form higher order oligomers has been shown to be essential for its in vivo activity. However, the specific functional relevance of RANTES oligomerization for distinct s...
متن کاملSpecific Activation of Leukocyte b2 Integrins Lymphocyte Function–associated Antigen-1 and Mac-1 by Chemokines Mediated by Distinct Pathways via the a Subunit Cytoplasmic Domains
We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (aMb2) but not lymphocyte function–associated antigen-1 (LFA-1; aLb2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 che...
متن کاملNpgrj_ni_1194 497..506
It is widely believed that rolling lymphocytes require successive chemokine-induced signaling for lymphocyte function– associated antigen 1 (LFA-1) to achieve a threshold avidity that will mediate lymphocyte arrest. Using an in vivo model of lymphocyte arrest, we show here that LFA-1-mediated arrest of lymphocytes rolling on high endothelial venules bearing LFA-1 ligands and chemokines was abru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001